Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Contact Dermatitis ; 89(5): 323-334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619972

RESUMO

BACKGROUND: The junctional adhesion molecule-like protein (JAML) plays important roles in wound healing and activation of epidermal γδ T cells in mice. Whether JAML plays a role in contact hypersensitivity (CHS), the animal model of allergic contact dermatitis (ACD), is not known. METHODS: To examine the role of JAML in CHS, we used various mouse models of CHS in JAML knockout (KO) and wild-type (WT) mice. Furthermore, the expression of the JAML ligand coxsackievirus and adenovirus receptor (CXADR) on keratinocytes was accessed in vitro and in vivo. RESULTS: JAML KO mice had a diminished inflammatory response during both the sensitization and elicitation phase of CHS and had reduced numbers of CD8+ and CD4+ T cells in the epidermis. Furthermore, interferon γ (IFNγ), interleukin 1ß (IL-1ß) and CXCL10 production were significantly reduced in JAML KO mice during the elicitation phase. We found that CD8+ T cells express JAML and that JAML is essential for rapid flare-up responses to contact allergens. Finally, we show that keratinocytes up-regulate the JAML ligand CXADR following exposure to contact allergens. CONCLUSION: Our study is the first to show a central role of JAML in CHS and reveals a potential new target for the treatment of ACD in humans.


Assuntos
Linfócitos T CD8-Positivos , Dermatite Alérgica de Contato , Humanos , Camundongos , Animais , Moléculas de Adesão Juncional , Ligantes , Epiderme , Camundongos Knockout , Camundongos Endogâmicos C57BL
2.
Yonsei Med J ; 64(6): 375-383, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37226564

RESUMO

PURPOSE: Junctional adhesion molecule (JAM)-A is an immunoglobulin-like molecule that colocalizes with tight junctions (TJs) in the endothelium and epithelium. It is also found in blood leukocytes and platelets. The biological significance of JAM-A in asthma, as well as its clinical potential as a therapeutic target, are not well understood. The aim of this study was to elucidate the role of JAM-A in a mouse model of asthma, and to determine blood levels of JAM-A in asthmatic patients. MATERIALS AND METHODS: Mice sensitized and challenged with ovalbumin (OVA) or saline were used to investigate the role of JAM-A in the pathogenesis of bronchial asthma. In addition, JAM-A levels were measured in the plasma of asthmatic patients and healthy controls. The relationships between JAM-A and clinical variables in patients with asthma were also examined. RESULTS: Plasma JAM-A levels were higher in asthma patients (n=19) than in healthy controls (n=12). In asthma patients, the JAM-A levels correlated with forced expiratory volume in 1 second (FEV1%), FEV1/forced vital capacity (FVC), and the blood lymphocyte proportion. JAM-A, phospho-JNK, and phospho-ERK protein expressions in lung tissue were significantly higher in OVA/OVA mice than in control mice. In human bronchial epithelial cells treated with house dust mite extracts for 4 h, 8 h, and 24 h, the JAM-A, phospho-JNK, and phospho-ERK expressions were increased, as shown by Western blotting, while the transepithelial electrical resistance was reduced. CONCLUSION: These results suggest that JAM-A is involved in the pathogenesis of asthma, and may be a marker for asthma.


Assuntos
Asma , Humanos , Animais , Camundongos , Moléculas de Adesão Juncional , Plaquetas , Western Blotting , Modelos Animais de Doenças
3.
J Integr Med ; 21(3): 268-276, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069006

RESUMO

OBJECTIVE: Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown. METHODS: Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting. RESULTS: JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML. CONCLUSION: JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Quempferóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
4.
Front Immunol ; 14: 1133886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033941

RESUMO

Introduction: Human immunodeficiency virus type 1 (HIV) transmission mostly occurs through the genital and intestinal mucosae. Although HIV-1 transmission has been extensively investigated, gaps remain in understanding the initial steps of HIV entry through the colonic mucosa. We previously showed that HIV can selectively trigger mononuclear phagocytes (MNP) to migrate within colonic epithelial cells to sample virions. Mucosal exposure to human seminal plasma (HSP), rich in pro- and anti-inflammatory cytokines, chemokines and growth factors, may as well induce alterations of the colonic mucosa and recruit immune cells, hence, affecting pathogen sampling and transmission. Methods: Here, we studied the role of HSP on the paracellular intestinal permeability by analyzing the distribution of two proteins known to play a key role in controlling the intestinal barrier integrity, namely the tight junctions-associated junctional adhesion molecule (JAM-A) and the adherents junction associated protein E-cadherin (E-CAD), by immunofluorescence and confocal microscopy. Also, we evaluated if HSP promotes the recruitment of MNP cells, specifically, the CD11c and CD64 positive MNPs, to the apical side of the human colonic mucosa. At this scope, HSP of HIV-infected and uninfected individuals with known fertility status was tested for cytokines, chemokines and growth factors concentration and used in an ex vivo polarized colonic tissue culture system to mimic as closely as possible the physiological process. Results: HSP showed statistically significant differences in cytokines and chemokines concentrations between the three groups of donors, i.e. HIV infected, or uninfected fertile or randomly identified. Nevertheless, we showed that in the ex vivo tissue culture HSP in general, neither affected the morphological structure of the colonic mucosa nor modulated the paracellular intestinal permeability. Interestingly, CD11c+ MNP cells migrated to the apical surface of the colonic epithelium regardless, if incubated with HIV-infected or -uninfected HSPs, while CD64+ MNP cells, did not change their distribution within the colonic mucosa. Discussion: In conclusion, even if HSP did not perturb the integrity of the human colonic mucosa, it affected the migration of a specific subset of MNPs that express CD11c towards the apical side of the colonic mucosa, which in turn may be involved in pathogen sampling.


Assuntos
Movimento Celular , Colo , Infecções por HIV , Mucosa Intestinal , Monócitos , Sêmen , Humanos , Caderinas/imunologia , Citocinas/imunologia , Epitélio/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , Moléculas de Adesão Juncional , Fagócitos/imunologia , Sêmen/imunologia , Monócitos/imunologia , Antígeno CD11c/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Colo/imunologia , Colo/virologia , HIV-1/imunologia , Movimento Celular/imunologia , Internalização do Vírus , Interações Hospedeiro-Patógeno/imunologia
5.
Cell Rep ; 42(2): 112040, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36701231

RESUMO

Junctional adhesion molecule-like protein (JAML) serves as a co-stimulatory molecule in γδ T cells. While it has recently been described as a cancer immunotherapy target in mice, its potential to cause toxicity, specific mode of action with regard to its cellular targets, and whether it can be targeted in humans remain unknown. Here, we show that JAML is induced by T cell receptor engagement, reveal that this induction is linked to cis-regulatory interactions between the CD3D and JAML gene loci. When compared with other immunotherapy targets plagued by low target specificity and end-organ toxicity, we find JAML to be mostly restricted to and highly expressed by tissue-resident memory CD8+ T cells in multiple cancer types. By delineating the key cellular targets and functional consequences of agonistic anti-JAML therapy in a murine melanoma model, we show its specific mode of action and the reason for its synergistic effects with anti-PD-1.


Assuntos
Moléculas de Adesão Celular , Neoplasias , Humanos , Animais , Camundongos , Moléculas de Adesão Juncional , Moléculas de Adesão Celular/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Linfócitos do Interstício Tumoral/metabolismo
6.
Journal of Integrative Medicine ; (12): 268-276, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982681

RESUMO

OBJECTIVE@#Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown.@*METHODS@#Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting.@*RESULTS@#JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML.@*CONCLUSION@#JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.


Assuntos
Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Moléculas de Adesão Juncional/metabolismo , Quempferóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Adenocarcinoma de Pulmão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
7.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142632

RESUMO

During the onset of acute inflammation, rapid trafficking of leukocytes is essential to mount appropriate immune responses towards an inflammatory insult. Monocytes are especially indispensable for counteracting the inflammatory stimulus, neutralising the noxa and reconstituting tissue homeostasis. Thus, monocyte trafficking to the inflammatory sites needs to be precisely orchestrated. In this study, we identify a regulatory network driven by miR-125a that affects monocyte adhesion and chemotaxis by the direct targeting of two adhesion molecules, i.e., junction adhesion molecule A (JAM-A), junction adhesion molecule-like (JAM-L) and the chemotaxis-mediating chemokine receptor CCR2. By investigating monocytes isolated from patients undergoing cardiac surgery, we found that acute yet sterile inflammation reduces miR-125a levels, concomitantly enhancing the expression of JAM-A, JAM-L and CCR2. In contrast, TLR-4-specific stimulation with the pathogen-associated molecular pattern (PAMP) LPS, usually present within the perivascular inflamed area, resulted in dramatically induced levels of miR-125a with concomitant repression of JAM-A, JAM-L and CCR2 as early as 3.5 h. Our study identifies miR-125a as an important regulator of monocyte trafficking and shows that the phenotype of human monocytes is strongly influenced by this miRNA, depending on the type of inflammatory stimulus.


Assuntos
MicroRNAs , Monócitos , Humanos , Inflamação/genética , Inflamação/metabolismo , Moléculas de Adesão Juncional/metabolismo , Lipopolissacarídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
J Transl Med ; 20(1): 260, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672776

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a heavy social burden worldwide. Because the mechanisms involved in LUAD remain unclear, the prognosis of LUAD remains poor. Consequently, it is urgent to investigate the potential mechanisms of LUAD. Junctional adhesion molecule-like protein (JAML), is recognized as a tumorigenesis molecule in gastric cancer. However, the role of JAML in LUAD is still unclear. Here we aimed to evaluate the role of JAML in LUAD. METHODS: qRT-PCR, Western blotting and immunohistochemistry were conducted to investigate the expression of JAML in LUAD tissues. JAML was knocked down and overexpressed in LUAD cells using transient transfection by siRNA and plasmids or stable transfection by lentivirus. Proliferation potential of LUAD cells were detected by Cell Counting Kit-8, EdU incorporation and Colony formation assay. Migration and invasion abilities of LUAD cells were determined by wound healing, transwell migration and invasion assays. Cell cycle and cell apoptosis were detected by flow cytometry. The effects of JAML in vivo were studied in xenograft tumor models. Western blotting was used to explore the molecular mechanisms of JAML function. In addition, rescue experiments were performed to verify the possible mechanisms. RESULTS: JAML expression was elevated in LUAD tissues compared with peritumor tissues, and this upregulation was positively related to pT and pTNM. Furthermore, both in vitro and in vivo, JAML silencing markedly repressed malignant behaviors of LUAD cells and vice versa. Knockdown of JAML also mediated cell cycle arrest at G0/G1 phase and promoted apoptosis in LUAD cells. Mechanistically, silencing JAML repressed the process of epithelial-mesenchymal transition by inactivating the Wnt/ß-catenin pathway in LUAD cells. Effects of JAML can be rescued by Wnt/ß-catenin pathway activator in A549 cells. CONCLUSIONS: Our data reveal the oncogenic role of JAML in LUAD, indicating that JAML may be a predictive biomarker and novel therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Moléculas de Adesão Celular/metabolismo , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Neoplasias Pulmonares/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo
9.
JCI Insight ; 7(14)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708906

RESUMO

Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Juncional/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
Tissue Barriers ; 10(3): 1996830, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719339

RESUMO

An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.


Assuntos
Claudinas , Junções Íntimas , Biomarcadores/análise , Biomarcadores/metabolismo , Claudinas/metabolismo , Moléculas de Adesão Juncional/análise , Moléculas de Adesão Juncional/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo
11.
Front Immunol ; 12: 767456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759934

RESUMO

The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1ß (IL-1ß), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1ß-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1ß-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1ß on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1ß modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.


Assuntos
Permeabilidade da Membrana Celular , Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Humanos , Mucosa Intestinal/citologia , Moléculas de Adesão Juncional/metabolismo , Modelos Biológicos , Quinase de Cadeia Leve de Miosina/metabolismo , Ocludina/metabolismo
12.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801758

RESUMO

The junction adhesion molecule (JAM) family of proteins play central roles in the tight junction (TJ) structure and function. In contrast to claudins (CLDN) and occludin (OCLN), the other membrane proteins of the TJ, whose structure is that of a 4α-helix bundle, JAMs are members of the immunoglobulin superfamily. The JAM family is composed of four members: A, B, C and 4. The crystal structure of the extracellular domain of JAM-A continues to be used as a template to model the secondary and tertiary structure of the other members of the family. In this article, we have expressed the extracellular domains of JAMs fused with maltose-binding protein (MBP). This strategy enabled the work presented here, since JAM-B, JAM-C and JAM4 are more difficult targets due to their more hydrophobic nature. Our results indicate that each member of the JAM family has a unique tertiary structure in spite of having similar secondary structures. Surface plasmon resonance (SPR) revealed that heterotypic interactions among JAM family members can be greatly favored compared to homotypic interactions. We employ the well characterized epithelial cadherin (E-CAD) as a means to evaluate the adhesive properties of JAMs. We present strong evidence that suggests that homotypic or heterotypic interactions among JAMs are stronger than that of E-CADs.


Assuntos
Caderinas/química , Claudinas/química , Proteínas Ligantes de Maltose/química , Ocludina/química , Antígenos CD/química , Cromatografia , Dicroísmo Circular , Biologia Computacional , Simulação por Computador , Escherichia coli/metabolismo , Humanos , Moléculas de Adesão Juncional/metabolismo , Cinética , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície , Junções Íntimas/metabolismo
13.
J Mol Histol ; 52(3): 545-553, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33763807

RESUMO

Junctional epithelium (JE) attaching to the enamel surface seals gaps around the teeth, functioning as the first line of gingival defense. Runt-related transcription factor 2 (Runx2) plays a role in epithelial cell fate, and the deficiency of Runx2 in JE causes periodontal destruction, while its effect on the barrier function of JE remains largely unexplored. In the present study, hematoxylin-eosin (H&E) staining revealed the morphological differences of JE between wild-type (WT) and Runx2 conditional knockout (cKO) mice. We speculated that these changes were related to the down-regulation of E-cadherin (E-cad), junctional adhesion molecule 1 (JAM1), and integrin ß6 (ITGB6) in JE. Moreover, immunohistochemistry (IHC) was conducted to assess the expressions of these proteins. To verify the relationship between Runx2 and the three above-mentioned proteins, human gingival epithelial cells (HGEs) were cultured for in vitro experiment. The expression of Runx2 in HEGs was depleted by lentivirus. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were adopted to analyze the differences in mRNA and protein expressions. Taken together, Runx2 played a crucial role in maintaining the structure and function integrality of JE via regulating the expressions of E-cad and JAM1.


Assuntos
Caderinas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Epitélio/metabolismo , Moléculas de Adesão Juncional/metabolismo , Dente Molar/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo , Células Epiteliais/metabolismo , Gengiva/citologia , Humanos , Cadeias beta de Integrinas/metabolismo , Mandíbula/metabolismo , Camundongos Knockout , Periodonto/metabolismo
14.
Cell Metab ; 32(6): 903-905, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264600

RESUMO

It is still unclear if the ability of key regulators of actin cytoskeletal remodeling to influence lipid metabolism contributes to kidney injury. In this issue of Cell Metabolism, Fu et al. (2020) show that junctional adhesion molecule-like (JAML) is a novel mediator of glomerular disease progression while suggesting a direct link between defects in cell adhesion and lipotoxicity.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Moléculas de Adesão Celular/metabolismo , Humanos , Moléculas de Adesão Juncional , Metabolismo dos Lipídeos , Podócitos/metabolismo
15.
Cell Rep ; 33(2): 108253, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053339

RESUMO

While plasminogen activator inhibitor-1 (PAI-1) is known to potentiate cellular migration via proteolytic regulation, this adipokine is implicated as an oncogenic ligand in the tumor microenvironment. To understand the underlying paracrine mechanism, here, we conduct transcriptomic analysis of 1,898 endometrial epithelial cells (EECs) exposed and unexposed to PAI-1-secreting adipose stromal cells. The PAI-1-dependent action deregulates crosstalk among tumor-promoting and tumor-repressing pathways, including transforming growth factor ß (TGF-ß). When PAI-1 is tethered to lipoprotein receptor-related protein 1 (LRP1), the internalized signaling causes downregulation of SMAD4 at the transcriptional and post-translational levels that attenuates TGF-ß-related transcription programs. Repression of genes encoding the junction and adhesion complex preferentially occurs in SMAD4-underexpressed EECs of persons with obesity. The findings highlight a role of PAI-1 signaling that renders ineffective intercellular communication for the development of adiposity-associated endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Moléculas de Adesão Juncional/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Smad4/metabolismo , Tecido Adiposo/patologia , Regulação para Baixo/genética , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/complicações , Ligação Proteica , Proteólise , Proteômica , Proteína Smad4/genética , Células Estromais/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo
16.
Cancer Res ; 80(22): 4878-4885, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816855

RESUMO

Tight junction (TJ) proteins are essential for mediating interactions between adjacent cells and coordinating cellular and organ responses. Initial investigations into TJ proteins and junctional adhesion molecules (JAM) in cancer suggested a tumor-suppressive role where decreased expression led to increased metastasis. However, recent studies of the JAM family members JAM-A and JAM-C have expanded the roles of these proteins to include protumorigenic functions, including inhibition of apoptosis and promotion of proliferation, cancer stem cell biology, and epithelial-to-mesenchymal transition. JAM function by interacting with other proteins through three distinct molecular mechanisms: direct cell-cell interaction on adjacent cells, stabilization of adjacent cell surface receptors on the same cell, and interactions between JAM and cell surface receptors expressed on adjacent cells. Collectively, these diverse interactions contribute to both the pro- and antitumorigenic functions of JAM. In this review, we discuss these context-dependent functions of JAM in a variety of cancers and highlight key areas that remain poorly understood, including their potentially diverse intracellular signaling networks, their roles in the tumor microenvironment, and the consequences of posttranslational modifications on their function. These studies have implications in furthering our understanding of JAM in cancer and provide a paradigm for exploring additional roles of TJ proteins.


Assuntos
Comunicação Celular/fisiologia , Progressão da Doença , Molécula A de Adesão Juncional/fisiologia , Molécula C de Adesão Juncional/fisiologia , Neoplasias/etiologia , Neoplasias/patologia , Apoptose/fisiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Molécula A de Adesão Juncional/química , Moléculas de Adesão Juncional/química , Moléculas de Adesão Juncional/fisiologia , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/fisiopatologia , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Junções Íntimas , Microambiente Tumoral/imunologia , Proteínas Supressoras de Tumor/fisiologia
17.
BMC Mol Cell Biol ; 21(1): 30, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303178

RESUMO

BACKGROUND: Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a recently identified cell adhesion molecule which is predominantly expressed by epithelial cells of the intestine and the kidney. Its expression is downregulated in both colon and renal cancer suggesting a tumor suppressive activity. The function of TMIGD1 at the cellular level is largely unclear. Published work suggests a protective role of TMIGD1 during oxidative stress in kidney epithelial cells, but the underlying molecular mechanisms are unknown. RESULTS: In this study, we address the subcellular localization of TMIGD1 in renal epithelial cells and identify a cytoplasmic scaffold protein as interaction partner of TMIGD1. We find that TMIGD1 localizes to different compartments in renal epithelial cells and that this localization is regulated by cell confluency. Whereas it localizes to mitochondria in subconfluent cells it is localized at cell-cell contacts in confluent cells. We find that cell-cell contact localization is regulated by N-glycosylation and that both the extracellular and the cytoplasmic domain contribute to this localization. We identify Synaptojanin 2-binding protein (SYNJ2BP), a PDZ domain-containing cytoplasmic protein, which localizes to both mitochondria and the plasma membrane, as interaction partner of TMIGD1. The interaction of TMIGD1 and SYNJ2BP is mediated by the PDZ domain of SYNJ2BP and the C-terminal PDZ domain-binding motif of TMIGD1. We also find that SYNJ2BP can actively recruit TMIGD1 to mitochondria providing a potential mechanism for the localization of TMIGD1 at mitochondria. CONCLUSIONS: This study describes TMIGD1 as an adhesion receptor that can localize to both mitochondria and cell-cell junctions in renal epithelial cells. It identifies SYNJ2BP as an interaction partner of TMIGD1 providing a potential mechanism underlying the localization of TMIGD1 at mitochondria. The study thus lays the basis for a better understanding of the molecular function of TMIGD1 during oxidative stress regulation.


Assuntos
Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Glicosilação , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios PDZ/genética , Ligação Proteica
18.
Biochim Biophys Acta Biomembr ; 1862(9): 183299, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247783

RESUMO

Junctional adhesion molecules (JAMs) comprise a small subfamily of the immunoglobulin superfamily of adhesion receptors with a multitude of physiological functions in vertebrate development and homeostasis. Several members of the JAM family localize at tight junctions of epithelial and endothelial cells where they interact with PDZ domain-containing scaffolding proteins. For some JAM family members, molecular mechanisms have been elaborated through which they regulate cell-cell contact maturation and tight junction formation. For other members of this family our knowledge on their role in barrier-forming epithelia is still fragmentary. Here, we review our current understanding of the contribution of JAM family proteins to the barrier function of epithelial and endothelial cells with a major focus on epithelial tight junctions.


Assuntos
Moléculas de Adesão Celular/genética , Imunoglobulinas/genética , Moléculas de Adesão Juncional/genética , Junções Íntimas/genética , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Humanos , Domínios PDZ/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética
19.
Theriogenology ; 142: 196-206, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606658

RESUMO

The maternal endometrium undergoes transformations during early pregnancy period to regulate the paracellular permeability across the epithelium and to enable adhesion between the trophoblast and endometrial epithelial cells. These transformations, under the influence of ovarian hormones, are associated with a partial loss in polarity of epithelial cell that is regulated by tight junctions (TJ), adherens junctions (AJ) and associated polarity protein complexes. This study examined the change in expression and distribution of proteins associated with TJs, AJs and apical partition defective (PAR) complex in porcine endometrium on Days 10, 13 and 16 of estrous cycle and pregnancy. Moreover, effect of hormones, progesterone (P4) and 17-ß estradiol (E2) on polar phenotype of endometrial epithelial cells was also investigated in vitro. There was pregnancy induced increase in gene and protein expression of TJ associated claudin-1 (CLDN1) on Day 13 of pregnancy as compared to corresponding day of estrous cycle and a decrease in TJ protein, zona occludens-1 (ZO-1) and PAR complex associated PAR6 expression levels on Day 16 of pregnancy (P < 0.05). Immunofluorescence studies revealed that on Days 10 and 13, TJ proteins occludin (OCLN) and ZO-1were primarily present in the apical region of lateral epithelial membrane. On Day 16 of pregnancy, whereas, OCLN redistributed into cytoplasm, ZO-1 decreased apically but was found to localize in the basal epithelium. The AJ proteins cadherin and ß-catenin were located at the apical epithelium on Day 10 of estrous cycle and pregnancy and Day 13 of estrous cycle. On Days 13 and 16 of pregnancy both proteins were expressed in the lateral membrane and co-localization between these proteins was observed on Day 16. On Day 10, PAR complex proteins PAR3, cell division control protein 42 (CDC42) and atypical protein kinase C (aPKC) ζ were observed in apical epithelium and in lateral membrane and CDC42 was also present in the cytoplasm of epithelium. Pregnancy induced redistribution of aPKCζ to cytoplasm and CDC42 to apical surface of luminal epithelium was observed on Days 13 and 16. The in vitro P4 and E2 treatment of epithelial cells mimicked in vivo results. These results indicate that P4 and E2 regulate alterations in epithelium that may facilitate embryo implantation and given the role of cadherin, catenin and CDC42 in embryo invasion, change in distribution of these proteins may limit the invasiveness of porcine conceptuses into the stroma.


Assuntos
Polaridade Celular/genética , Endométrio/metabolismo , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Prenhez , Suínos , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Células Cultivadas , Implantação do Embrião/genética , Feminino , Expressão Gênica , Idade Gestacional , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Gravidez , Prenhez/genética , Prenhez/metabolismo , Suínos/embriologia , Suínos/genética , Suínos/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Distribuição Tecidual
20.
Viruses ; 11(11)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671627

RESUMO

It is known that levels of the anti-apoptotic protein survivin are reduced during Murine norovirus MNV-1 and Feline calicivirus (FCV) infection as part of the apoptosis establishment required for virus release and propagation in the host. Recently, our group has reported that overexpression of survivin causes a reduction of FCV protein synthesis and viral progeny production, suggesting that survivin may affect early steps of the replicative cycle. Using immunofluorescence assays, we observed that overexpression of survivin, resulted in the reduction of FCV infection not only in transfected but also in the neighboring nontransfected CrFK cells, thus suggesting autocrine and paracrine protective effects. Cells treated with the supernatants collected from CrFK cells overexpressing survivin showed a reduction in FCV but not MNV-1 protein production and viral yield, suggesting that FCV binding and/or entry were specifically altered. The reduced ability of FCV to bind to the surface of the cells overexpressing survivin, or treated with the supernatants collected from these cells, correlate with the reduction in the cell surface of the FCV receptor, the feline junctional adhesion molecule (fJAM) 1, while no effect was observed in the cells transfected with the pAm-Cyan vector or in cells treated with the corresponding supernatants. Moreover, the overexpression of survivin affects neither Vaccinia virus (VACV) production in CrFK cells nor MNV-1 virus production in RAW 267.4 cells, indicating that the effect is specific for FCV. All of these results taken together indicate that cells that overexpress survivin, or cell treatment with the conditioned medium from these cells, results in the reduction of the fJAM-1 molecule and, therefore, a specific reduction in FCV entry and infection.


Assuntos
Infecções por Caliciviridae/virologia , Calicivirus Felino/fisiologia , Survivina/metabolismo , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/metabolismo , Calicivirus Felino/metabolismo , Gatos , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Moléculas de Adesão Juncional/metabolismo , Receptores Virais/metabolismo , Especificidade da Espécie , Survivina/genética , Proteínas Virais/biossíntese , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...